Compression forces generated by actin comet tails on lipid vesicles.

نویسندگان

  • Paula A Giardini
  • Daniel A Fletcher
  • Julie A Theriot
چکیده

Polymerizing networks of actin filaments generate force for a variety of movements in living cells, including protrusion of filopodia and lamellipodia, intra- and intercellular motility of certain bacterial and viral pathogens, and motility of endocytic vesicles and other membrane-bound organelles. During actin-based motility, coexisting populations of actin filaments exert both pushing and retarding forces on the moving cargo. To examine the distribution and magnitude of forces generated by actin, we have developed a model system where large artificial lipid vesicles coated with the protein ActA from the bacterial pathogen Listeria monocytogenes are propelled by actin polymerization in cytoplasmic extract. We find that motile vesicles associated with actin comet tails are significantly deformed due to an inward compression force exerted by actin polymerization orthogonal to the direction of motion, which is >10-fold greater in magnitude than the component of the force exerted in the direction of motion. Furthermore, there is a spatial segregation of the pushing and retarding forces, such that pushing predominates along the sides of the vesicle, although retarding forces predominate at the rear. We estimate that the total net (pushing minus retarding) force generated by the actin comet tail is approximately 0.4-4 nN. In addition, actin comet tail formation is associated with polarization of the ActA protein on the fluid vesicle surface, which may reinforce the persistence of unidirectional motion by helping to maintain a persistent asymmetry of actin filament density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin-Dependent Propulsion of Endosomes and Lysosomes by Recruitment of N-Wasp✪

We examined the spatial and temporal control of actin assembly in living Xenopus eggs. Within minutes of egg activation, dynamic actin-rich comet tails appeared on a subset of cytoplasmic vesicles that were enriched in protein kinase C (PKC), causing the vesicles to move through the cytoplasm. Actin comet tail formation in vivo was stimulated by the PKC activator phorbol myristate acetate (PMA)...

متن کامل

Mechanism of Actin Network Attachment to Moving Membranes: Barbed End Capture by N-WASP WH2 Domains

Actin filament networks exert protrusive and attachment forces on membranes and thereby drive membrane deformation and movement. Here, we show that N-WASP WH2 domains play a previously unanticipated role in vesicle movement by transiently attaching actin filament barbed ends to the membrane. To dissect the attachment mechanism, we reconstituted the propulsive motility of lipid-coated glass bead...

متن کامل

Activation of p61Hck triggers WASp- and Arp2/3-dependent actin-comet tail biogenesis and accelerates lysosomes.

Secretory lysosomes exist in few cell types, but various mechanisms are involved to ensure their mobilization within the cytoplasm. In phagocytes, lysosome exocytosis is a regulated phenomenon at least in part under the control of the phagocyte-specific and lysosome-associated Src-kinase p61Hck (hematopoietic cell kinase). We show here that p61Hck activation triggered polymerization of actin at...

متن کامل

Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails

Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using elli...

متن کامل

ARF1-mediated actin polymerization produces movement of artificial vesicles.

Vesicular trafficking and actin dynamics on Golgi membranes are both regulated by ADP-ribosylation factor 1 (ARF1) through the recruitment of various effectors, including vesicular coats. Actin assembly on Golgi membranes contributes to the architecture of the Golgi complex, vesicle formation, and trafficking and is mediated by ARF1 through a cascade that leads to Arp2/3 complex activation. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 11  شماره 

صفحات  -

تاریخ انتشار 2003